Package: RcppDynProg (via r-universe)

September 13, 2024

Type Package

Title 'Rcpp' Dynamic Programming
Version 0.2.1

Date 2023-08-19

URL https://github.com/WinVector/RcppDynProg/,
https://winvector.github.io/RcppDynProg/

BugReports https://github.com/WinVector/RcppDynProg/issues
Maintainer John Mount <jmount@win-vector.com>

Description Dynamic Programming implemented in 'Repp'. Includes
example partition and out of sample fitting applications. Also
supplies additional custom coders for the 'vtreat' package.

License GPL-2|GPL-3

Depends R (>=3.4.0)

Imports wrapr (>=2.0.4), Repp (>= 1.0.0), utils, stats
LinkingTo Rcpp, ReppArmadillo

RoxygenNote 7.2.3

Suggests tinytest, knitr, rmarkdown

VignetteBuilder knitr

Repository https://winvector.r-universe.dev
RemoteUrl https://github.com/winvector/rcppdynprog
RemoteRef HEAD

RemoteSha 72168a19a3cda9t5945¢9305107744d7312c6cf5

Contents

ReppDynProg-package e
CONSE_COSES o o e i e
const_costs_logistic e e
HN_COSES . . o o o o o e

https://github.com/WinVector/RcppDynProg/
https://winvector.github.io/RcppDynProg/
https://github.com/WinVector/RcppDynProg/issues

Index

const_costs

lin_costs_logistic e e e e 4
PIECEWISE_CONSLANt L e e e e e e e e e e e 5
piecewise_constant_coder 6
piecewise_linear. L. e e e e e 6
piecewise_linear_coder Lo 7
score_SOlUtion e e 8
solve_for_partition e e 8
solve_for_partitionc L. 9
solve_interval_partition oL 11
solve_interval_partition_ k oL o 12
solve_interval_partition_no_k oL 12

14

RcppDynProg-package RcppDynProg

Description

Repp dynamic programming solutions for partitioning and machine learning problems. Includes
out of sample fitting applications. Also supplies additional custom coders for the vtreat package.
Please see https://github.com/WinVector/RcppDynProg for details.

Author(s)

John Mount

See Also

Useful links:

https://github.com/WinVector/RcppDynProg/
https://winvector.github.io/RcppDynProg/
Report bugs at https://github.com/WinVector/RcppDynProg/issues

const_costs const_costs

Description

Built matrix of total out of sample interval square error costs for held-out means. One indexed.

Usage

const_costs(y, w, min_seg, indices)

https://github.com/WinVector/RcppDynProg
https://github.com/WinVector/RcppDynProg/
https://winvector.github.io/RcppDynProg/
https://github.com/WinVector/RcppDynProg/issues

const_costs_logistic

Arguments

y

w
min_seg

indices

Value

NumericVector, values to group in order.
NumericVector, weights.
positive integer, minimum segment size (>=1).

IntegerVector, order list of indices to pair.

xcosts NumericMatix, for j>=i xcosts(i,j) is the cost of partition element [i,...,j] (inclusive).

Examples

const_costs(c(1, 1, 2, 2), c(1, 1, 1, 1), 1, 1:4)

const_costs_logistic const_costs_logistic

Description

Built matrix of interval logistic costs for held-out means. One indexed.

Usage

const_costs_logistic(y, w, min_seg, indices)

Arguments

y

w
min_seg

indices

Value

NumericVector, 0/1 values to group in order (should be in interval [0,1]).
NumericVector, weights (should be positive).
positive integer, minimum segment size (>=1).

IntegerVector, order list of indices to pair.

xcosts NumericMatix, for j>=i xcosts(i,j) is the cost of partition element [i,...,j] (inclusive).

Examples

const_costs_logistic(c(0.1, 0.1, 0.2, 0.2), c(1, 1, 1, 1), 1, 1:4)

lin_costs_logistic

lin_costs

lin_costs

Description

Built matrix of interval costs for held-out linear models. One indexed.

Usage

lin_costs(x, y, w, min_seg, indices)

Arguments

X
y
w
min_seg

indices

Value

NumericVector, x-coords of values to group.
NumericVector, values to group in order.
NumericVector, weights.

positive integer, minimum segment size (>=1).

IntegerVector, ordered list of indices to pair.

xcosts NumericMatix, for j>=i xcosts(i,j) is the cost of partition element [i,...,j] (inclusive).

Examples

lin_costs(c(1, 2, 3, 4), c(1, 2, 2, 1), c(1, 1, 1, 1), 1, 1:4)

lin_costs_logistic lin_costs_logistic deviance costs.

Description

Built matrix of interval deviance costs for held-out logistic models. Fits are evaluated in-sample.

One indexed.

Usage

lin_costs_logistic(x, y, w, min_seg, indices)

piecewise_constant 5

Arguments
X NumericVector, x-coords of values to group.
y NumericVector, values to group in order (should be in interval [0,1]).
w NumericVector, weights (should be positive).
min_seg positive integer, minimum segment size (>=1).
indices IntegerVector, ordered list of indices to pair.
Value

xcosts NumericMatix, for j>=i xcosts(i,j) is the cost of partition element [i,...,j] (inclusive).

Examples

lin_costs_logistic(c(1, 2, 3, 4, 5,6, 7),c(@,0,1,0,1,1,0), c(l,1,1,1,1,1, 1), 3,1:7)

piecewise_constant Piecewise constant fit.

Description

vtreat custom coder based on RcppDynProg: : solve_for_partition().

Usage

piecewise_constant(varName, x, y, w = NULL)

Arguments
varName character, name of variable to work on.
X numeric, input values.
y numeric, values to estimate.
w numeric, weights.
Examples

piecewise_constant(”"x", 1:8, c(-1, -1, -1, -1, 1, 1, 1, 1))

6 piecewise_linear
piecewise_constant_coder
Piecewise constant fit coder factory.
Description
Build a piecewise constant fit coder with some parameters bound in.
Usage
piecewise_constant_coder(
penalty = 1,
min_n_to_chunk = 1000,
min_seg = 10,
max_k = 1000
)
Arguments
penalty per-segment cost penalty.
min_n_to_chunk minimum n to subdivied problem.
min_seg positive integer, minimum segment size.
max_k maximum segments to divide into.
Value
a vtreat coder
Examples
coder <- piecewise_constant_coder(min_seg = 1)
coder("x", 1:8, c(-1, -1, -1, =1, 1, 1, 1, 1))
piecewise_linear Piecewise linear fit.
Description
vtreat custom coder based on RcppDynProg: : solve_for_partition().
Usage

piecewise_linear(varName, x, y, w = NULL)

piecewise_linear_coder

Arguments
varName character, name of variable to work on.
X numeric, input values.
numeric, values to estimate.
w numeric, weights.
Examples

piecewise_linear("x", 1:8, c(1, 2, 3, 4, 4, 3, 2, 1))

piecewise_linear_coder
Piecewise linear fit coder factory.

Description

Build a piecewise linear fit coder with some parameters bound in.

Usage

piecewise_linear_coder(
penalty = 1,
min_n_to_chunk = 1000,
min_seg = 10,
max_k = 1000

Arguments

penalty per-segment cost penalty.

min_n_to_chunk minimum n to subdivied problem.

min_seg positive integer, minimum segment size.
max_k maximum segments to divide into.
Value

a vtreat coder

Examples

coder <- piecewise_linear_coder(min_seg = 1)
coder("x", 1:8, c(1, 2, 3, 4, 4, 3, 2, 1))

8 solve_for_partition

score_solution compute the price of a partition solution (and check is valid).

Description

compute the price of a partition solution (and check is valid).

Usage

score_solution(x, solution)

Arguments

X NumericMatix, for j>=i x(i,j) is the cost of partition element [i,...,j] (inclusive).

solution vector of indices

Value

price

Examples

x <- matrix(c(1,1,5,1,1,0,5,0,1), nrow=3)
s <- c(1, 2, 4)
score_solution(x, s)

solve_for_partition Solve for a piecewise linear partiton.

Description

Solve for a good set of right-exclusive x-cuts such that the overall graph of y~x is well-approximated
by a piecewise linear function. Solution is a ready for use with with base: :findInterval() and
stats: :approx() (demonstrated in the examples).

Usage
solve_for_partition(
X’
Y,
w = NULL,
penalty = 0,

min_n_to_chunk = 1000,
min_seg = 1,
max_k = length(x)

solve_for_partitionc

Arguments
X numeric, input variable (no NAs).
y numeric, result variable (no NAs, same length as x).
not used, force later arguments by name.
w numeric, weights (no NAs, positive, same length as x).
penalty per-segment cost penalty.

min_n_to_chunk minimum n to subdivied problem.

min_seg positive integer, minimum segment size.
max_k maximum segments to divide into.
Value

a data frame appropriate for stats::approx().

Examples

example data
d <- data.frame(
x = 1:8,
y=c(1, 2, 3, 4, 4, 3, 2, 1))

solve for break points

soln <- solve_for_partition(dx, dy)
show solution

print(soln)

label each point
d$group <- base::findInterval(
dsx,
soln$x[soln$what=="1left"'])
apply piecewise approximation
d$estimate <- stats::approx(
soln$x,
soln$pred,
xout = d$x,
method = 'linear',
rule = 2)$y
show result
print(d)

solve_for_partitionc Solve for a piecewise constant partiton.

10 solve_for_partitionc

Description

Solve for a good set of right-exclusive x-cuts such that the overall graph of y~x is well-approximated
by a piecewise linear function. Solution is a ready for use with with base: :findInterval() and
stats: :approx() (demonstrated in the examples).

Usage
solve_for_partitionc(
X ’
Y,
w = NULL,
penalty = 0,

min_n_to_chunk = 1000,
min_seg = 1,
max_k = length(x)

)
Arguments
X numeric, input variable (no NAs).
y numeric, result variable (no NAs, same length as x).
not used, force later arguments by name.
w numeric, weights (no NAs, positive, same length as x).
penalty per-segment cost penalty.

min_n_to_chunk minimum n to subdivied problem.

min_seg positive integer, minimum segment size.
max_k maximum segments to divide into.
Value

a data frame appropriate for stats::approx().

Examples

example data
d <- data.frame(
x = 1:8,
y =c(-1, -1, -1, =1, 1, 1, 1, 1))

solve for break points

soln <- solve_for_partitionc(dx, dy)
show solution

print(soln)

label each point
d$group <- base::findInterval(
ds$x,

solve_interval_partition 11

soln$x[soln$what=="1left'])
apply piecewise approximation
d$estimate <- stats::approx(
soln$x,
soln$pred,
xout = d$x,
method = 'constant',
rule = 2)3%y
show result
print(d)

solve_interval_partition
solve_interval_partition interval partition problem.

Description

Solve a for a minimal cost partition of the integers [1,...,ntow(x)] problem where for j>=i x(i,j).
is the cost of choosing the partition element [i,...,j]. Returned solution is an ordered vector v of
length k<=kmax where: v[1]==1, v[k]==nrow(x)+1, and the partition is of the form [v[i], v[i+1])
(intervals open on the right).

Usage

solve_interval_partition(x, kmax)

Arguments
X square NumericMatix, for j>=i x(i,j) is the cost of partition element [i,...,j] (in-
clusive).
kmax int, maximum number of segments in solution.
Value

dynamic program solution.

Examples

costs <- matrix(c(1.5, NA ,NA ,1 ,0 , NA, 5, -1, 1), nrow = 3)
solve_interval_partition(costs, nrow(costs))

12 solve_interval_partition_no_k

solve_interval_partition_k

solve_interval_partition interval partition problem with a bound on
number of steps.

Description

Solve a for a minimal cost partition of the integers [1,...,ntow(x)] problem where for j>=i x(i,j).
is the cost of choosing the partition element [i,...,j]. Returned solution is an ordered vector v of
length k<=kmax where: v[1]==1, v[k]==nrow(x)+1, and the partition is of the form [v[i], v[i+1])
(intervals open on the right).

Usage

solve_interval_partition_k(x, kmax)

Arguments
X square NumericMatix, for j>=i x(i,j) is the cost of partition element [i,...,j] (in-
clusive).
kmax int, maximum number of segments in solution.
Value

dynamic program solution.

Examples

costs <- matrix(c(1.5, NA ,NA ,1 ,0 , NA, 5, -1, 1), nrow = 3)
solve_interval_partition(costs, nrow(costs))

solve_interval_partition_no_k

solve_interval_partition interval partition problem, no boun on the
number of steps.

Description

Not working yet.

Usage

solve_interval_partition_no_k(x)

solve_interval_partition_no_k 13

Arguments
X square NumericMatix, for j>=i x(i,j) is the cost of partition element [i,...,j] (in-
clusive).
Details

Solve a for a minimal cost partition of the integers [1,...,nrow(x)] problem where for j>=i x(i,j). is
the cost of choosing the partition element [i,...,j]. Returned solution is an ordered vector v of length
k where: v[1]==1, v[k]==nrow(x)+1, and the partition is of the form [v[i], v[i+1]) (intervals open
on the right).

Value

dynamic program solution.

Examples

costs <- matrix(c(1.5, NA ,NA ,1 ,0 , NA, 5, -1, 1), nrow = 3)
solve_interval_partition(costs, nrow(costs))

Index

const_costs, 2
const_costs_logistic, 3

lin_costs, 4
lin_costs_logistic, 4

piecewise_constant, 5
piecewise_constant_coder, 6
piecewise_linear, 6
piecewise_linear_coder, 7

RcppDynProg (RcppDynProg-package), 2
RcppDynProg-package, 2

score_solution, 8
solve_for_partition, 8
solve_for_partitionc, 9
solve_interval_partition, 11
solve_interval_partition_k, 12
solve_interval_partition_no_k, 12

14

	RcppDynProg-package
	const_costs
	const_costs_logistic
	lin_costs
	lin_costs_logistic
	piecewise_constant
	piecewise_constant_coder
	piecewise_linear
	piecewise_linear_coder
	score_solution
	solve_for_partition
	solve_for_partitionc
	solve_interval_partition
	solve_interval_partition_k
	solve_interval_partition_no_k
	Index

